/ Posts / AI During Unpredictable Events

AI During Unpredictable Events


by N/A - Dominick Amalraj

on March 19, 2020


There is no doubt that the impact of COVID-19 is affecting so many individuals. Away from the health concerns of this virus, businesses are concerned with their overall operations. Machine Learning and Artificial Intelligence are aspects that many are confused on how to implement during a time that could not have been foreseen. Machine learning is built on the ability to create a model from historical data then generate predictions for the future. But if the future data is vastly different than the historical data the model is trained on, it can lead to inefficient predictions. Currently many organizations are seeing extreme shifts in their data that could not have been predicting making machine learning a much more difficult task. Here are some tips to make the most of your machine learning projects during unpredictable times. 

Retrain Models:

The most important and first thing to look at is to retrain all your current models in production. The data after the COVID-19 outbreak will most likely be much different than the historical data used to train any model. The data that is occurring recently is vital to be used in the training of the model to have more realistic predictions. 

Contrary to a popular but sometimes false opinion, more data is not always better. This could not be more of the case here as actually having a shorter historical window used to train the model can lead to more accurate predictions for what is to come in the future. Take a sales forecast model for example, by retraining the model with more recent historical data that is more applicable to the current state of the organization the model will be able to understand trends that are associated with the current events. 

Since there are changes happening every day and data will continue to fluctuate during this period, it is for the better to predict for a shorter period of time. This way organizations will be able to understand how their predictions are comparing to the actual results and gradually increase their prediction window. Along with that, if a model is trained on a shorter period of time the predictions will only be significant for a shorter future period. 

Redefine Use Cases: 

In unpredictable scenarios, the business problems change as well. This means that previous machine learning use cases should be altered to match the new questions that an organization have. Let's take a look at a potential store during the events that are currently happening. There is a chance they are seeing a decrease in sales, but instead of forecasting what their sales will be for every product, it might be more beneficial to look into what products a customer will most likely buy. This may call for the store to purchase external data and see what products are still in demand for consumers at this time. From there the store can plan promotional campaigns for high demand products, market certain products to different customers, and control their inventory making sure high demand products are in stock. 

None the less, machine learning is greatly impacted at times like this but can still be a major supplement to help leverage your business. Please reach out to info@pomerolpartners.com if you want to learn more on how to improve your machine learning and artificial intelligence projects during this period. 



See More Posts


Pomerol Partners Restructures for Expansion

by Owen Bott on March 11, 2021

Pomerol Appoints New Partners - Scott Duthie & Goncalo Pereira

View

dotData Overview: Enterprise AI Platform

by N/A - Dominick Amalraj on January 11, 2021

View

COVID19 - How Are We Doing?

by Owen Bott on October 22, 2020

Utilizing Qlik to track our progress against COVID19.

View

Control the Entire Data Science Process With DataRobot

by N/A - Dominick Amalraj on October 2, 2020

Learn how DataRobot can accelerate every aspect in the machine learning process

View

What's New in Qlik Sense - Sept 2020

by Owen Bott on October 1, 2020

What's New to Qlik Sense with the September 2020 Release

View

"FIRE!" How My Neighbor's House Fire Reminded Me That Solving Problems Requires Creativity

by John Fitzgerald on August 31, 2020

A fire at a neighbor's house reminded me that the first attempt at solving a problem might not always be the right approach.

View

Tired of Losing Your Fantasy Football League? Use Analytics to Your Advantage

by N/A - Tyler Robinson on August 18, 2020

How to take your Fantasy Football draft to the next level.

View

Data Analytics in Credit Unions

by Scott Duthie on August 6, 2020

Data driven decision making starts at the branch – a case study for credit unions.

View

Machine Learning Capable to Machine Learning Driven Organizations

by N/A - Dominick Amalraj on May 26, 2020

Elevate your organization from machine learning capable to machine learning driven.

View

The Necessity for Clean Data - A Sample Use Case

by N/A - Tyler Robinson on May 8, 2020

The Necessity for Clean Data - A Sample Use Case

View

4 Awesome Techniques to take your NPrinting Deployment to the Next Level

by Scott Duthie on May 6, 2020

4 Ways to extend Qlik NPrinting to get more value out of it.

View

Sneak Peak into the Qlik Sense April 2020 Release

by Owen Bott on April 27, 2020

Sneak Peak into all of the new features in the Qlik Sense April 2020 Release

View

Are You Getting The Most Out Of Your Qlik Sense Monitoring Tools? Part 1: The Operations Monitor

by N/A - Brian McManamy on April 5, 2020

Are you getting the most out of your Qlik Sense monitoring tools?

View

From Mission Critical to Not-So Critical, Qlik Can Improve Your Decision Time and Quality

by N/A - Tyler Robinson on March 21, 2020

How can you use data to solve your most critical problems?

View

How Do You Prepare for Your Next Qlik Sense Upgrade?

by Wendell Truax on March 16, 2020

Plan your Qlik Sense upgrades more reliably with our extension inventory application.

View

Business Intelligence has a Collaboration Problem

by Scott Duthie on March 1, 2020

How do you transform ‘Consumers’ of analytics to ‘Contributors’? You provide a tool for them to seamlessly share and communicate their questions, insights and ideas.

View

NodeGraph: Your Solution to Data Quality

by Scott Duthie on February 18, 2020

Explore the many ways that NodeGraph can help you track and manage your Qlik metadata.

View

Pomerol Announces Partnership with Veronica’s Voice

by Scott Duthie on January 8, 2020

Pomerol joins forces with non-profit to increase sex trafficking awareness through data analytics.

View

Data Wrangle Your Way to More Accurate Forecasts

by on January 8, 2020

Learn how Trifacta can simplify and expedite your data transformations for analysis.

View

Qlik Sense November 2019 Release

by on January 8, 2020

Check out the latest and greatest in the November 2019 Qlik Sense update.

View

Pomerol Announces Partnership with Motio, Inc.

by N/A - Mike Mahoney on November 21, 2019

Learn about Motio and how version control is crucial for your Qlik deployment.

View

Welcome to the Pomerol Team, Vizlib!

by N/A - Mike Mahoney on November 21, 2019

Vizlib, a industry leading developer of Qlik Sense visualization extensions, has joined the Pomerol team.

View

Pomerol Partners and Sense Excel Close the Gap Between Excel and Qlik Sense

by on November 21, 2019

Pomerol Partners and Sense Excel collaborate to “turbo-charge” reporting and analysis for organizations

View

Top BI Trends for 2019

by N/A - Mike Mahoney on November 21, 2019

What are the hot BI topics your organization should be thinking about?

View

Pomerol Partners Forms Key Alliance with Couchbase

by N/A - Mike Mahoney on November 21, 2019

Couchbase and Pomerol Partners Drive Customer Success with Faster Time to Value

View

Pomerol Partners and StreamSets: Traditional ETL Is Dead. All Hail DataOps!

by on November 21, 2019

We have partnered with StreamSets to help modernize your data integration efforts.

View

Want to build a successful self-service BI project? Here’s 3 top tips to get you moving

by on November 21, 2019

Use these tips to build a self-service analytics platform for your organization.

View

Qlik Acquires CrunchBot and Crunch Data

by on November 21, 2019

Qlik recently acquired CrunchBot and Crunch Data, an experienced AI and solution development team.

View

What’s New in Qlik Sense April 2019?

by on November 21, 2019

Check out the new updates and functionalities of the Qlik Sense April 2019 Release.

View

Pomerol Partners Joins DataRobot in Strategic Technology Alliance

by Scott Duthie on November 21, 2019

Pomerol Partners and DataRobot to collaborate on automated machine learning within predictive analytics

View

7 Reasons Your Machine Learning Project Will Fail

by on November 21, 2019

7 major roadblocks of machine learning projects and how to overcome them.

View

Qlik Sense February 2019 – Our Picks for the Four Top New Features

by on November 21, 2019

Check out the new updates and functionalities for the Qlik Sense February 2019 Release.

View

Top 5 Features of the Qlik June 2019 Release

by on November 21, 2019

Check out the best updates and functionalities for the June 2019 Qlik Sense Release.

View

Data Wrangling for Machine Learning Projects

by N/A - Mike Mahoney on October 16, 2019

Check out how the data wrangling tool, Trifacta, can help advance your machine learning needs.

View

Big Squid and Pomerol Partners Join Forces in a New Partnership

by Kanon Cozad on August 1, 2019

Learn about Big Squid and how Pomerol can help you implement it.

View

Pomerol Partners Signs-on as K4 Analytics Reseller

by John Fitzgerald on December 25, 2016

Leverage K4 Analytics for advanced planning, budgeting, and forecasting from inside your Qlik apps

View

See All Posts